Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546.657
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38558503

RESUMO

The blood-brain barrier presents a key limitation to the administration of therapeutic molecules for the treatment of brain disease. While drugs administered orally or intravenously must cross this barrier to reach brain targets, the unique anatomical structure of the olfactory system provides a route to deliver drugs directly to the brain. Entering the brain via receptor, carrier, and adsorption-mediated transcytosis in the nasal olfactory and trigeminal regions has the potential to increase drug delivery. In this review, we introduce the physiological and anatomical structures of the nasal cavity, and summarize the possible modes of transport and the relevant receptors and carriers in the nose-to-brain pathway. Additionally, we provide examples of nanotherapeutics developed for intranasal drug delivery to the brain. Further development of nanoparticles that can be applied to intranasal delivery systems promises to improve drug efficacy and reduce drug resistance and adverse effects by increasing molecular access to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.


Assuntos
Encéfalo , Nanopartículas , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Administração Intranasal , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Nanopartículas/química
3.
Can Vet J ; 65(4): 363-366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562983

RESUMO

A 15-year-old intact male dachshund dog weighing 4.3 kg and a 5-year-old intact male mixed-breed dog weighing 13.6 kg were referred for examination because of paraparesis and facial paralysis, respectively. Magnetic resonance imaging (MRI) of the thoracolumbar region and brain was performed. The dogs were premedicated with IV butorphanol, 0.2 mg/kg body weight (BW) and midazolam, 0.2 mg/kg BW. Anesthesia was induced with IV propofol, 4 to 5 mg/kg BW and maintained with sevoflurane in oxygen. The dachshund was orotracheally intubated with a 5.0-millimeter internal diameter endotracheal (ET) tube. During positioning in the MRI room, intermittent positive pressure ventilation (IPPV) was applied. The mixed-breed dog was orotracheally intubated with a 6.0-millimeter internal diameter ET tube. After inflation of the ET tube cuff, a leaking test was done by applying positive pressure ventilation. In both dogs, a distinct "popping" sound was heard when positive pressure was applied, after which air leakage from the cuff was evident. Failure to inflate the pilot balloon led to suspicion of a ruptured cuff. Reintubation was completed, both dogs remained stable during anesthesia, and no postanesthetic complications were observed. Rupture of both cuffs, which was visually confirmed, was thought to be caused by overinflation of the cuff, repeated sterilization of the ET tubes, and positive pressure ventilation. Repeated sterilization of ET tubes with ethylene oxide can alter the physical integrity of cuffs. Care should be taken not to overinflate ET tube cuffs, especially when they have been repeatedly sterilized, as cuff rupture may result in failure to provide adequate IPPV. Key clinical message: This report describes 2 cases in which ET tube cuff rupture was noted during anesthesia for MRI.


Rupture du ballonnet du tube endotrachéal pendant l'anesthésie chez 2 chiens. Un chien teckel mâle intact de 15 ans pesant 4,3 kg et un chien croisé mâle intact de 5 ans pesant 13,6 kg ont été référés pour examen en raison de paraparésie et de paralysie faciale, respectivement. Une imagerie par résonance magnétique (IRM) de la région thoraco-lombaire et du cerveau a été réalisée. Les chiens ont reçu une prémédication avec du butorphanol IV, 0,2 mg/kg de poids corporel (PC), et du midazolam, 0,2 mg/kg PC. L'anesthésie a été induite avec du propofol IV, 4 à 5 mg/kg de PC et maintenue avec du sévoflurane dans de l'oxygène. Le teckel a été intubé par voie orotrachéale avec un tube endotrachéal (TE) de diamètre interne de 5,0 millimètres. Lors du positionnement dans la salle d'IRM, une ventilation intermittente à pression positive (VIPP) a été appliquée. Le chien de race mixte a été intubé par voie orotrachéale avec un TE de 6,0 millimètres de diamètre interne. Après le gonflage du ballonnet du TE, un test d'étanchéité a été effectué en appliquant une ventilation à pression positive. Chez les deux chiens, un son distinct de « claquement ¼ a été entendu lorsqu'une pression positive a été appliquée, après quoi une fuite d'air du ballonnet est devenue évidente. Le fait de ne pas gonfler le ballon pilote a fait soupçonner une rupture du ballonnet. Une ré-intubation a été effectuée, les deux chiens sont restés stables pendant l'anesthésie et aucune complication post-anesthésique n'a été observée. La rupture des deux ballonnets, confirmée visuellement, aurait été causée par un surgonflage du ballonnet, une stérilisation répétée des TE et une ventilation à pression positive. La stérilisation répétée des TE avec de l'oxyde d'éthylène peut altérer l'intégrité physique des ballonnets. Il convient de veiller à ne pas surgonfler les ballonnets des TE, en particulier lorsqu'ils ont été stérilisés à plusieurs reprises, car la rupture du ballonnet peut entraîner l'incapacité de fournir une VIPP adéquate.Message clinique clé:Ce rapport décrit 2 cas dans lesquels une rupture du ballonnet du TE a été constatée lors d'une anesthésie pour IRM.(Traduit par Dr Serge Messier).


Assuntos
Anestesia , Intubação Intratraqueal , Cães , Masculino , Animais , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/veterinária , Anestesia/efeitos adversos , Anestesia/veterinária , Sevoflurano/efeitos adversos , Encéfalo
4.
Stress ; 27(1): 2317856, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38563163

RESUMO

In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.


Assuntos
Neuroesteroides , Humanos , Estresse Psicológico/metabolismo , Esteroides/fisiologia , Hormônios Esteroides Gonadais , Encéfalo/fisiologia
5.
J Med Syst ; 48(1): 37, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564061

RESUMO

Computed tomography perfusion (CTP) is a dynamic 4-dimensional imaging technique (3-dimensional volumes captured over approximately 1 min) in which cerebral blood flow is quantified by tracking the passage of a bolus of intravenous contrast with serial imaging of the brain. To diagnose and assess acute ischemic stroke, the standard method relies on summarizing acquired CTPs over the time axis to create maps that show different hemodynamic parameters, such as the timing of the bolus arrival and passage (Tmax and MTT), cerebral blood flow (CBF), and cerebral blood volume (CBV). However, producing accurate CTP maps requires the selection of an arterial input function (AIF), i.e. a time-concentration curve in one of the large feeding arteries of the brain, which is a highly error-prone procedure. Moreover, during approximately one minute of CT scanning, the brain is exposed to ionizing radiation that can alter tissue composition, and create free radicals that increase the risk of cancer. This paper proposes a novel end-to-end deep neural network that synthesizes CTP images to generate CTP maps using a learned LSTM Generative Adversarial Network (LSTM-GAN). Our proposed method can improve the precision and generalizability of CTP map extraction by eliminating the error-prone and expert-dependent AIF selection step. Further, our LSTM-GAN does not require the entire CTP time series and can produce CTP maps with a reduced number of time points. By reducing the scanning sequence from about 40 to 9 time points, the proposed method has the potential to minimize scanning time thereby reducing patient exposure to CT radiation. Our evaluations using the ISLES 2018 challenge dataset consisting of 63 patients showed that our model can generate CTP maps by using only 9 snapshots, without AIF selection, with an accuracy of 84.37 % .


Assuntos
AVC Isquêmico , Humanos , Aprendizagem , Encéfalo/diagnóstico por imagem , Algoritmos , Perfusão
6.
Mil Med Res ; 11(1): 20, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556884

RESUMO

BACKGROUND: Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury (TBI). However, the heterogeneity, multifunctionality, and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood. METHODS: Using the combined single-cell transcriptomics, metabolomics, and proteomics analysis from TBI patients and the TBI mouse model, we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests. We also characterized the underlying mechanisms both in vitro and in vivo through molecular simulations, signaling detections, gene expression regulation assessments [including dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays], primary cultures or co-cultures of neutrophils and oligodendrocytes, intracellular iron, and lipid hydroperoxide concentration measurements, as well as forkhead box protein O1 (FOXO1) conditional knockout mice. RESULTS: We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model. Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI, aggravating acute brain inflammatory damage and promoting late TBI-induced depression. In the acute stage, FOXO1 upregulated cytoplasmic Versican (VCAN) to interact with the apoptosis regulator B-cell lymphoma-2 (BCL-2)-associated X protein (BAX), suppressing the mitochondrial translocation of BAX, which mediated the antiapoptotic effect companied with enhancing interleukin-6 (IL-6) production of FOXO1high neutrophils. In the chronic stage, the "FOXO1-transferrin receptor (TFRC)" mechanism contributes to FOXO1high neutrophil ferroptosis, disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein, which contributes to the progression of late depression after TBI. CONCLUSIONS: FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI, which provides insight into the heterogeneity, reprogramming activity, and versatility of neutrophils in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Neutrófilos , Animais , Humanos , Camundongos , Proteína X Associada a bcl-2/metabolismo , Encéfalo , Lesões Encefálicas Traumáticas/complicações , Depressão , Proteína Forkhead Box O1/metabolismo , Ferro
7.
Nat Commun ; 15(1): 2632, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565598

RESUMO

Handedness is a manifestation of brain hemispheric specialization. Left-handedness occurs at increased rates in neurodevelopmental disorders. Genome-wide association studies have identified common genetic effects on handedness or brain asymmetry, which mostly involve variants outside protein-coding regions and may affect gene expression. Implicated genes include several that encode tubulins (microtubule components) or microtubule-associated proteins. Here we examine whether left-handedness is also influenced by rare coding variants (frequencies ≤ 1%), using exome data from 38,043 left-handed and 313,271 right-handed individuals from the UK Biobank. The beta-tubulin gene TUBB4B shows exome-wide significant association, with a rate of rare coding variants 2.7 times higher in left-handers than right-handers. The TUBB4B variants are mostly heterozygous missense changes, but include two frameshifts found only in left-handers. Other TUBB4B variants have been linked to sensorineural and/or ciliopathic disorders, but not the variants found here. Among genes previously implicated in autism or schizophrenia by exome screening, DSCAM and FOXP1 show evidence for rare coding variant association with left-handedness. The exome-wide heritability of left-handedness due to rare coding variants was 0.91%. This study reveals a role for rare, protein-altering variants in left-handedness, providing further evidence for the involvement of microtubules and disorder-relevant genes.


Assuntos
Lateralidade Funcional , Estudo de Associação Genômica Ampla , Humanos , Exoma/genética , Encéfalo , Proteínas Repressoras/genética , Fatores de Transcrição Forkhead/genética
8.
Sci Rep ; 14(1): 7774, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565877

RESUMO

Human microbiota mainly resides on the skin and in the gut. Human gut microbiota can produce a variety of short chain fatty acids (SCFAs) that affect many physiological functions and most importantly modulate brain functions through the bidirectional gut-brain axis. Similarly, skin microorganisms also have identical metabolites of SCFAs reported to be involved in maintaining skin homeostasis. However, it remains unclear whether these SCFAs produced by skin bacteria can affect brain cognitive functions. In this study, we hypothesize that the brain's functional activities are associated with the skin bacterial population and examine the influence of local skin-bacterial growth on event-related potentials (ERPs) during an oddball task using EEG. Additionally, five machine learning (ML) methods were employed to discern the relationship between skin microbiota and cognitive functions. Twenty healthy subjects underwent three rounds of tests under different conditions-alcohol, glycerol, and water. Statistical tests confirmed a significant increase in bacterial population under water and glycerol conditions when compared to the alcohol condition. The metabolites of bacteria can turn phenol red from red-orange to yellow, confirming an increase in acidity. P3 amplitudes were significantly enhanced in response to only oddball stimulus at four channels (Fz, FCz, and Cz) and were observed after the removal of bacteria when compared with that under the water and glycerol manipulations. By using machine learning methods, we demonstrated that EEG features could be separated with a good accuracy (> 88%) after experimental manipulations. Our results suggest a relationship between skin microbiota and brain functions. We hope our findings motivate further study into the underlying mechanism. Ultimately, an understanding of the relationship between skin microbiota and brain functions can contribute to the treatment and intervention of diseases that link with this pathway.


Assuntos
Glicerol , Microbiota , Humanos , Encéfalo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Cognição , Eletroencefalografia , Água
10.
Cancer Discov ; 14(4): 648-652, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571415

RESUMO

SUMMARY: This commentary urges a paradigm shift in how we approach research and drug development for glioblastoma, reimagining it as an aberrant brain-like organ, distinct from other cancers, to inspire innovative treatment strategies and interdisciplinary collaboration, addressing the minimal progress in extending glioblastoma patient survival despite years of research and investment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo
11.
Curr Opin Oncol ; 36(3): 186-194, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573208

RESUMO

PURPOSE OF REVIEW: This review focuses on special populations poorly represented in current evidence-based practice for metastatic renal cell carcinoma (mRCC). This includes the elderly and frail, patients on immunosuppression or with autoimmune diseases, patients with brain, liver, and/or bone metastases, and RCC with sarcomatoid features. RECENT FINDINGS: Certain populations are poorly represented in current trials for mRCC. Patients with central nervous system (CNS) metastases are often excluded from first-line therapy trials. Modern doublet systemic therapy appears to benefit patients with bone or liver metastases, but data supporting this conclusion is not robust. Post-hoc analyses on patients with sarcomatoid differentiation have shown improved response to modern doublet therapy over historical treatments. The elderly are underrepresented in current clinical trials, and most trials exclude all but high-performing (nonfrail) patients, though true frailty is likely poorly captured using the current widely adopted indices. It is difficult to make conclusions about the efficacy of modern therapy in these populations from subgroup analyses. Data from trials on other malignancies in patients with autoimmune diseases or solid organ transplant recipients on immunosuppression suggest that immune checkpoint inhibitors (ICIs) may still have benefit, though at the risk of disease flare or organ rejection. The efficacy of ICIs has not been demonstrated specifically for RCC in this group of patients. SUMMARY: The elderly, frail, and immunosuppressed, those with tumors having aggressive histologic features, and patients with brain, bone, and/or liver metastases represent the populations least understood in the modern era of RCC treatment.


Assuntos
Doenças Autoimunes , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Hepáticas , Idoso , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Encéfalo , Neoplasias Hepáticas/tratamento farmacológico
12.
JAMA Netw Open ; 7(4): e244855, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573637

RESUMO

Importance: Perceived social isolation is associated with negative health outcomes, including increased risk for altered eating behaviors, obesity, and psychological symptoms. However, the underlying neural mechanisms of these pathways are unknown. Objective: To investigate the association of perceived social isolation with brain reactivity to food cues, altered eating behaviors, obesity, and mental health symptoms. Design, Setting, and Participants: This cross-sectional, single-center study recruited healthy, premenopausal female participants from the Los Angeles, California, community from September 7, 2021, through February 27, 2023. Exposure: Participants underwent functional magnetic resonance imaging while performing a food cue viewing task. Main Outcomes and Measures: The main outcomes included brain reactivity to food cues, body composition, self-reported eating behaviors (food cravings, reward-based eating, food addiction, and maladaptive eating behaviors), and mental health symptoms (anxiety, depression, positive and negative affect, and psychological resilience). Results: The study included 93 participants (mean [SD] age, 25.38 [7.07] years). Participants with higher perceived social isolation reported higher fat mass percentage, lower diet quality, increased maladaptive eating behaviors (cravings, reward-based eating, uncontrolled eating, and food addiction), and poor mental health (anxiety, depression, and psychological resilience). In whole-brain comparisons, the higher social isolation group showed altered brain reactivity to food cues in regions of the default mode, executive control, and visual attention networks. Isolation-related neural changes in response to sweet foods correlated with various altered eating behaviors and psychological symptoms. These altered brain responses mediated the connection between social isolation and maladaptive eating behaviors (ß for indirect effect, 0.111; 95% CI, 0.013-0.210; P = .03), increased body fat composition (ß, -0.141; 95% CI, -0.260 to -0.021; P = .02), and diminished positive affect (ß, -0.089; 95% CI, -0.188 to 0.011; P = .09). Conclusions and Relevance: These findings suggest that social isolation is associated with altered neural reactivity to food cues within specific brain regions responsible for processing internal appetite-related states and compromised executive control and attentional bias and motivation toward external food cues. These neural responses toward specific foods were associated with an increased risk for higher body fat composition, worsened maladaptive eating behaviors, and compromised mental health. These findings underscore the need for holistic mind-body-directed interventions that may mitigate the adverse health consequences of social isolation.


Assuntos
Sinais (Psicologia) , Saúde Mental , Feminino , Humanos , Adulto , Estudos Transversais , Encéfalo/diagnóstico por imagem , Isolamento Social , Comportamento Alimentar , Obesidade
13.
J Neurosci Res ; 102(4): e25329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597144

RESUMO

There is a need for new treatments to reduce brain injuries derived from neonatal hypoxia/ischemia. The only viable option used in the clinic today in infants born at term is therapeutic hypothermia, which has a limited efficacy. Treatments with exogenous RNase have shown great promise in a range of different adult animal models including stroke, ischemia/reperfusion injury, or experimental heart transplantation, often by conferring vascular protective and anti-inflammatory effects. However, any neuroprotective function of RNase treatment in the neonate remains unknown. Using a well-established model of neonatal hypoxic/ischemic brain injury, we evaluated the influence of RNase treatment on RNase activity, gray and white matter tissue loss, blood-brain barrier function, as well as levels and expression of inflammatory cytokines in the brain up to 6 h after the injury using multiplex immunoassay and RT-PCR. Intraperitoneal treatment with RNase increased RNase activity in both plasma and cerebropinal fluids. The RNase treatment resulted in a reduction of brain tissue loss but did not affect the blood-brain barrier function and had only a minor modulatory effect on the inflammatory response. It is concluded that RNase treatment may be promising as a neuroprotective regimen, whereas the mechanistic effects of this treatment appear to be different in the neonate compared to the adult and need further investigation.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Recém-Nascido , Lactente , Humanos , Animais Recém-Nascidos , Ribonucleases/metabolismo , Ribonucleases/farmacologia , Lesões Encefálicas/tratamento farmacológico , Encéfalo/metabolismo , Isquemia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Modelos Animais de Doenças
14.
Neuroreport ; 35(7): 476-485, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38597326

RESUMO

The objective of this study is to explore the relationship between the glymphatic system and alterations in the structure and function of the brain in white matter hyperintensity (WMH) patients. MRI data were collected from 27 WMH patients and 23 healthy controls. We calculated the along perivascular space (ALPS) indices, the anterior corner distance of the lateral ventricle, and the width of the third ventricle for each subject. The DPABISurf tool was used to calculate the cortical thickness and cortical area. In addition, data processing assistant for resting-state fMRI was used to calculate regional homogeneity, degree centrality, amplitude low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), and voxel-mirrored homotopic connectivity (VMHC). In addition, each WMH patient was evaluated on the Fazekas scale. Finally, the correlation analysis of structural indicators and functional indicators with bilateral ALPS indices was investigated using Spearman correlation analysis. The ALPS indices of WMH patients were lower than those of healthy controls (left: t = -4.949, P < 0.001; right: t = -3.840, P < 0.001). This study found that ALFF, fALFF, regional homogeneity, degree centrality, and VMHC values in some brain regions of WMH patients were alternated (AlphaSim corrected, P < 0.005, cluster size > 26 voxel, rmm value = 5), and the cortical thickness and cortical area of WMH patients showed trend changes (P < 0.01, cluster size > 20 mm2, uncorrected). Interestingly, we found significantly positive correlations between the left ALPS indices and degree centrality values in the superior temporal gyrus (r = 0.494, P = 0.009, P × 5 < 0.05, Bonferroni correction). Our results suggest that glymphatic system impairment is related to the functional centrality of local connections in patients with WMH. This provides a new perspective for understanding the pathological mechanisms of cognitive impairment in the WMH population.


Assuntos
Sistema Glinfático , Substância Branca , Humanos , Sistema Glinfático/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
15.
Emergencias ; 36(2): 148, 2024 Apr.
Artigo em Espanhol, Inglês | MEDLINE | ID: mdl-38597622

Assuntos
Encéfalo , Humanos
16.
J Comp Neurol ; 532(4): e25612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591638

RESUMO

Cellular-level anatomical data from early fetal brain are sparse yet critical to the understanding of neurodevelopmental disorders. We characterize the organization of the human cerebral cortex between 13 and 15 gestational weeks using high-resolution whole-brain histological data sets complimented with multimodal imaging. We observed the heretofore underrecognized, reproducible presence of infolds on the mesial surface of the cerebral hemispheres. Of note at this stage, when most of the cerebrum is occupied by lateral ventricles and the corpus callosum is incompletely developed, we postulate that these mesial infolds represent the primordial stage of cingulate, callosal, and calcarine sulci, features of mesial cortical development. Our observations are based on the multimodal approach and further include histological three-dimensional reconstruction that highlights the importance of the plane of sectioning. We describe the laminar organization of the developing cortical mantle, including these infolds from the marginal to ventricular zone, with Nissl, hematoxylin and eosin, and glial fibrillary acidic protein (GFAP) immunohistochemistry. Despite the absence of major sulci on the dorsal surface, the boundaries among the orbital, frontal, parietal, and occipital cortex were very well demarcated, primarily by the cytoarchitecture differences in the organization of the subplate (SP) and intermediate zone (IZ) in these locations. The parietal region has the thickest cortical plate (CP), SP, and IZ, whereas the orbital region shows the thinnest CP and reveals an extra cell-sparse layer above the bilaminar SP. The subcortical structures show intensely GFAP-immunolabeled soma, absent in the cerebral mantle. Our findings establish a normative neurodevelopment baseline at the early stage.


Assuntos
Encéfalo , Córtex Cerebral , Humanos , Corpo Caloso , Neurônios , Cabeça
17.
Anesthesiology ; 140(5): 881-883, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592354

Assuntos
Encéfalo , Idioma
18.
Adv Tech Stand Neurosurg ; 50: 185-199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592531

RESUMO

Favorable clinical outcomes in adult and pediatric neurosurgical oncology generally depend on the extent of tumor resection (EOR). Maximum safe resection remains the main aim of surgery in most intracranial tumors. Despite the accuracy of intraoperative magnetic resonance imaging (iMRI) in the detection of residual intraoperatively, it is not widely implemented worldwide owing to enormous cost and technical difficulties. Over the past years, intraoperative ultrasound (IOUS) has imposed itself as a valuable and reliable intraoperative tool guiding neurosurgeons to achieve gross total resection (GTR) of intracranial tumors.Being less expensive, feasible, doesn't need a high level of training, doesn't need a special workspace, and being real time with outstanding temporal and spatial resolution; all the aforementioned advantages give a superiority for IOUS in comparison to iMRI during resection of brain tumors.In this chapter, we spot the light on the technical nuances, advanced techniques, outcomes of resection, pearls, and pitfalls of the use of IOUS during the resection of brain tumors.


Assuntos
Neoplasias Encefálicas , Hemisferectomia , Psicocirurgia , Adulto , Criança , Humanos , Ultrassonografia , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
19.
J Neuroinflammation ; 21(1): 83, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581043

RESUMO

BACKGROUND: It is well established that traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function and that systemic immune changes contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. METHODS: To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham (i.e., 90 days post-surgery) congenic donor mice into otherwise healthy, age-matched, irradiated CD45.2 C57BL/6 (WT) hosts. Immune changes were evaluated by flow cytometry, multiplex ELISA, and NanoString technology. Moderate-to-severe TBI was induced by controlled cortical impact injury and neurological function was measured using a battery of behavioral tests. RESULTS: TBI induced chronic alterations in the transcriptome of BM lineage-c-Kit+Sca1+ (LSK+) cells in C57BL/6 mice, including modified epigenetic and senescence pathways. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI at 8 weeks and 8 months post-reconstitution showed that longer reconstitution periods (i.e., time post-injury) were associated with increased microgliosis and leukocyte infiltration. Pre-treatment with a senolytic agent, ABT-263, significantly improved behavioral performance of aged C57BL/6 mice at baseline, although it did not attenuate neuroinflammation in the acutely injured brain. CONCLUSIONS: TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in hematopoiesis, innate immunity, and neurological function, as well as altered sensitivity to subsequent brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Camundongos , Animais , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/patologia , Encéfalo/metabolismo
20.
Acta Neuropathol ; 147(1): 67, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581586

RESUMO

Transcription factor EB (TFEB) is a master regulator of genes involved in the maintenance of autophagic and lysosomal homeostasis, processes which have been implicated in the pathogenesis of GBA-related and sporadic Parkinson's disease (PD), and dementia with Lewy bodies (DLB). TFEB activation results in its translocation from the cytosol to the nucleus. Here, we investigated TFEB subcellular localization and its relation to intracellular alpha-synuclein (aSyn) accumulation in post-mortem human brain of individuals with either incidental Lewy body disease (iLBD), GBA-related PD/DLB (GBA-PD/DLB) or sporadic PD/DLB (sPD/DLB), compared to control subjects. We analyzed nigral dopaminergic neurons using high-resolution confocal and stimulated emission depletion (STED) microscopy and semi-quantitatively scored the TFEB subcellular localization patterns. We observed reduced nuclear TFEB immunoreactivity in PD/DLB patients compared to controls, both in sporadic and GBA-related cases, as well as in iLBD cases. Nuclear depletion of TFEB was more pronounced in neurons with Ser129-phosphorylated (pSer129) aSyn accumulation in all groups. Importantly, we observed previously-unidentified TFEB-immunopositive perinuclear clusters in human dopaminergic neurons, which localized at the Golgi apparatus. These TFEB clusters were more frequently observed and more severe in iLBD, sPD/DLB and GBA-PD/DLB compared to controls, particularly in pSer129 aSyn-positive neurons, but also in neurons lacking detectable aSyn accumulation. In aSyn-negative cells, cytoplasmic TFEB clusters were more frequently observed in GBA-PD/DLB and iLBD patients, and correlated with reduced GBA enzymatic activity as well as increased Braak LB stage. Altered TFEB distribution was accompanied by a reduction in overall mRNA expression levels of selected TFEB-regulated genes, indicating a possible early dysfunction of lysosomal regulation. Overall, we observed cytoplasmic TFEB retention and accumulation at the Golgi in cells without apparent pSer129 aSyn accumulation in iLBD and PD/DLB patients. This suggests potential TFEB impairment at the early stages of cellular disease and underscores TFEB as a promising therapeutic target for synucleinopathies.


Assuntos
Doença por Corpos de Lewy , Humanos , alfa-Sinucleína/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...